

Lifetime calculation for metal wire mesh vibration dampers subjected to cyclic loads

Metal Cushion

- ☐ Metal cushions are derived from knitted wire (wire mesh) by pressing ☐ Applied in vibration engineering, when high damping, lifetime and
- robustness is needed [1]

- Characteristic progressive force-deflection curve with hysteresis
- Full load capacity in one direction only (anisotropic material)
- Usually applied pre-tensioned in pairs as spring-damper system

Damage / Failure Criterion

- ☐ Three damage mechanisms are identified:
 - Plastic deformation
 - Breakage of individual wires
 - Abrasion of the wires at the contact points

- ☐ Height of cushion is decreasing over the fatigue lifetime
- Determination of damage degree by recording characteristic curve in intervals throughout fatigue tests

- Damage degree described by increase of absolute deflection subjected to test load compared to initial condition
- $\square \quad \text{Damage degree for a specific test force: } D = \frac{h_0 h_{p,i}}{h_0 h_{p,0}}$
- ☐ Exceeding the failure criterion of 30 % means no total failure of dampers

Experimental

- ☐ Tests were carried out on pulse test bench with individual metal cushions
- ☐ Purely axial sinusoidal force with constant amplitude per test run

- \Box Tests were terminated when failure criterion was reached or $\geq 10^7$ cycles
- □ No influence of test frequency on fatigue was detected (5 to 100 Hz)

Results

- ☐ Fatique tests were performed at five levels of mean stress with different stress amplitudes
- Across all tests: The smaller the load and higher the lifetime, the more nonlinear is the progression of the damage degree

- ☐ Scatter of the test results increases with higher numbers of load cycles
- ☐ Fatique lifetime is lowest, when the stress amplitude is close to the mean stress (low minimum stress)

Validation / Utilization

- Results are statistically evaluated using a linear approach [2] [3]
- S-N curve with two slope ranges for each mean stress level (best fit)

- \Box Failure probability $p_A = 10$ % acceptable for given failure criterion
- \Box Fatigue safety factor j = 3 suggested for metal cushion dimensioning

- ☐ Manufacturing surface pressure of a cushion is used as reference to normalize the stress and strength
- ☐ Mean stress sensitivity for different fatigue lifetimes can be used as limit curve for dimensioning of cushions

Conclusions / Outlook

- Lifetime-oriented design of metal cushions in development is feasible
- Evaluation of S-N curves for metal cushions similar as for solid metals
- Linear damage accumulation with the obtained test data as a basis can be applied to calculate the damage degree of cushions due to load spectra
- Data of individual metal cushions can normalized be applied to systems

Literature

- [1] A. Pérez et al., Metal cushion dampers for railway applications:
- A review, Construction and Building Materials, vol. 238, Mar. 2020 S. Einbock, Betriebsfestigkeitsberechnung, Norderstedt: Books on
- E. Haibach, Betriebsfestigkeit Verfahren und Daten zur Bauteilberechnung, Heidelberg: Springer Verlag, 2002